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Abstract. This paper is devoted to the application of the recently devised ghost-free analytic perturbation
theory (APT) for the analysis of some QCD observables. We start with a discussion of the main problem
of the perturbative QCD, ghost singularities, and with a resume of its resolving within the APT. By a few
examples in various energy and momentum transfer regions (with the flavor number f = 3, 4 and 5) we
demonstrate the effect of the improved convergence of the APT modified perturbative QCD expansion.
Our first observation is that in the APT analysis the three-loop contribution (∼ α3

s ) is as a rule numerically
inessential. This gives hope for a practical solution of the well-known problem of the asymptotic nature
of the common QFT perturbation series. The second result is that the usual perturbative analysis of
time-like events with the large π2 term in the α3

s coefficient is not adequate at s ≤ 2GeV2. In particular,
this relates to τ decay. Then for the “high” (f = 5) region it is shown that the common two-loop (NLO,
NLLA) perturbation approximation widely used there (at 10GeV <∼ s1/2 <∼ 170GeV) for the analysis of
shape/events data contains a systematic negative error at the 1–2 per cent level for the extracted ᾱ

(2)
s

values. Our physical conclusion is that the ᾱs(M2
Z) value averaged over the f = 5 data appreciably differs,

〈ᾱs(M2
Z)〉f=5 � 0.124, from the currently accepted “world average” (= 0.118).

1 Preamble

In QCD, a dominant means for the theoretical analysis is
based on the perturbation power expansion supported by
an appropriate renormalization group (RG) summation.
This perturbative QCD (pQCD) satisfactorily correlates
the bulk of the experimental data in spite of the fact that
the RG invariant power expansion parameter ᾱs is not
“small enough” a quantity. Nowadays, the physically ac-
cessible region corresponds to three, four and five (f =
3, 4, 5) flavor numbers (of active quarks). Just in the three-
flavor region there lie unphysical singularities of the cen-
tral theoretical object, the invariant effective coupling ᾱs.
These singularities, associated with the QCD scale param-
eter Λf=3 � 400MeV, complicate the theoretical interpre-
tation of data in the “small energy” and “small momen-
tum transfer” regions (s1/2, q ≡ (q2)1/2 <∼ 1 ÷ 1.5GeV).
On the other hand, as is well known, their existence con-
tradicts some general statements of the local QFT.

In this paper, we first discuss this main problem of
pQCD, the singularities lying in the physically accessi-
ble domain, and then give a resume of its solution within
the recently devised ghost-free analytic perturbation the-
ory (APT) that resolves the problem without using any
additional adjustable parameters. Then we give some im-
pressive results of the application of APT to the analysis
of QCD observables.

a e-mail: shirkovd@thsun1.jinr.ru

1.1 Invariant QCD coupling and observables

Usually, the perturbative QCD part of the theoretical con-
tribution to observables in both the space- and time-like
channels is presented in the form of a two- or three-term
power expansion

O(x)
O0

= 1 + r(x);

r(x) = c1ᾱs(x) + c2ᾱ2
s + c3ᾱ3

s + . . . ;
x = q2 or = s (1)

(our coefficients are normalized by ck = Ckπ−k, differently
from the commonly adopted Ck, like in [1–3]) over powers
of the effective QCD coupling ᾱs which is supposed ad hoc
to be of the same form as in the two channels, e.g., in the
massless three-loop case

ᾱ(3)
s (x) =

1
β0L

− b1

β2
0

lnL

L2

+
1

β3
0L3

[
b2
1(ln

2 L − lnL − 1) + b2
]

+
1

β4
0L4

[
b3
1

(
− ln3 L +

5
2
ln2 L + 2 lnL − 1

2

)

− 3b1b2 lnL +
b3

2

]
. (2)
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Here, L = ln(x/Λ2), and for the beta-function coefficients
we use the normalization

β(α) = −β0α2 − β1α3 − β2α4 + . . .

= −β0α2 (
1 + b1α + b2α2 + . . .

)
,

that is also free of the π powers. Numerically, they are of
the order of unity,

β0(f) =
33 − 2f

12π
; b1(f) =

153 − 19f

2π(33 − 2f)
;

β0(4 ± 1) = 0.875 ± 0.005; b1(4 ± 1) = 0.490−0.089
+0.076.

Meanwhile, the RG notion of the invariant coupling
was first introduced in QED [4] in the space-like region in
terms of a real constant z3 of the finite Dyson renormal-
ization transformation. Just this QED Euclidean invariant
charge ē(q) is the Fourier transform of the space distribu-
tion e(r) of the electric charge (arising due to vacuum
fluctuations around a “bare” point electron) discussed by
Dirac [5] in the thirties – see Appendix IX in the textbook
in [6].

Generally, in the RG formalism (for details, see, e.g.,
the chapter on the renormalization group in the mono-
graph in [7] and/or Sect. 1 in [8]) the notion of the invari-
ant coupling ḡ(q) is defined only in the space-like domain.

In particular, this means that if some observable O(q2)
is physically a function of one kinematic Lorentz invariant
space-like argument q2, then, due to its renormalization
invariance, it should be a function of RG invariants only.
For instance, in the one coupling massless case

O(q2/µ2, gµ) = F
(
ḡ(q2/µ2, gµ)

)
with F (g) = O(1, g).

Due to this important property, in the weak coupling case
we deal with the functional expansion of an observable
O(q2) in powers of the invariant coupling ḡ. This is the
real foundation of the QCD power expansion (1) in the
Euclidean case with x = q2. At the same time, within
the RG formalism there is no natural means for defining
the invariant coupling g̃(s); s = −q2 and the perturbative
expansion for an observable Õ(s) in the time-like region.

Nevertheless, in modern practice, people commonly
use the same singular expression for the QCD effective
coupling ᾱs, like (2), in both the space- and time-like do-
mains. The only price usually paid for this transferring
from the Euclidean to the Minkowskian region is a change
of the numerical expansion coefficients. The time-like ones
ck≥3 = dk − δk include negative “π2 terms” proportional
to π2 and lower expansion coefficients ck,

δ3 =
(πβ0(f))2

3
c1,

δ4 = (πβ0)2
(

c2 +
5
6

b1c1

)
. . . (3)

These (rather essential, as far as π2β2
0(f = 4 ± 1) =

4.340−.666
+.723) structures δk arise [9–12] in the course of ana-

lytic continuation from the Euclidean to the Minkowskian
region. The coefficients dk should be treated as genuine

Table 1. Minkowskian ck and Euclidean di = ci+δi expansion
coefficients and their differences

Process f c1 = d1 c2 = d2 c3 d3 δ3 δ4

τ decay 3 1/π .526 0.852 1.389 0.537 5.01
e+e− 4 .318 .155 −0.351 0.111 0.462 2.451
e+e− 5 .318 .143 −0.413 −0.023 0.390 1.752
Z0 decay 5 .318 .095 −0.483 −0.094 0.390 1.576

kth order ones. They are calculated via the relevant Feyn-
man diagrams.

To demonstrate the importance of the “π2 terms”, we
took the f = 3 case for τ decay, the f = 4, 5 cases for
e+e− → hadron annihilation and the Z0 decay (with f =
5); see Table 1, in which we also give values for the π2

terms. In the normalization (1), all coefficients ck, dk and
δk are of the order of unity. In the f = 4, 5 region the
contribution δ3 prevails in c3 and |d3| 	 |c3| (see also
Table II in Bjorken’s review [11]).

1.2 Unphysical singularities

Let us remind the reader that the ghost-trouble first dis-
covered in QED in the mid-fifties (and quite soon in the
renormalizable version of the pion–nucleon interaction)
was considered there as a serious argument in favor of the
inner inconsistency of the whole local QFT. In the QED
case, the ghost singularity lies far above the mass of the
Universe and has no pragmatic meaning.

However, in QCD it lies in the quite physical infrared
(IR) region and we are forced to face it. This means that,
if one believes in QCD as a consistent, physically impor-
tant theory, one has no other possibility than to consider
the QCD unphysical singularities as an artefact of some
approximations used in pQCD. This point of view is sup-
ported by some lattice simulations and by the solution of
the Schwinger–Dyson equations – see, e.g., Sect. 5.3. in the
recent review in [13].

For illustration of the fundamental inconsistency of the
current pQCD practice connected with unphysical singu-
larities, take the well-known relation between the so-called
Adler function D and the total cross-section ratio R of the
related process

D(q2) = q2
∫ ∞

0

R(s)ds

(s + q2)2
. (4)

In the case of inclusive e+e− annihilation into hadrons,
R(s) is the ratio of cross-sections presented in the form
R(s) = 1+ r(s) with the function r expandable in powers
of ᾱs(s) like in (1 ). At the same time, the Adler function
is also used in the form D = 1 + d with d expanded in
powers of ᾱs(q2).

Here, we face two paradoxes. First, ᾱs(q2) and, hence,
the perturbative D(q2) obeys – see (2) – a non-physical
singularity at q2 = Λ2 in evident contradiction with the
representation (4). Second, the integrand R(s), being ex-
pressed via powers of ᾱs(s), obeys non-integrable singu-
larities at s = Λ2, which makes the r.h.s. of (4) senseless.
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This second problem is typical of inclusive cross-sec-
tions, e.g., for the hadronic τ decay. Generally, in the
current literature it is treated in a very strange way: by
shifting the contour of integration from the real axis with
strong singularities on it into the complex plane. However,
such a “physical” trick cannot be justified within the the-
ory of complex variables.

1.3 The “ghost” problem resolving

Meanwhile, as is known from the early eighties, the pertur-
bation representation (1) for the Minkowskian observable
with the coefficients modified by the π2 terms is valid only
at small parameter π2/ ln2(s/Λ2) values; that is, in the
region of sufficiently high energies W ≡ s1/2 
 Λeπ/2 �
2GeV.

Here, it is appropriate to recall the construction de-
vised by Radyushkin [9] and Krasnikov–Pivovarov [10]
(RKP procedure) about twenty years ago. These authors
used the integral transformation

R(s) =
i
2π

∫ s+iε

s−iε

dz

z
Dpt(−z) ≡ R

[
D(q2)

]
, (5)

reverse to the Adler relation (4) (that is treated now as
an integral transformation)

R(s) → D(q2) = q2
∫ ∞

0

R(s)ds

(s + q2)2
≡ D {R(s)} (6)

for the defining modified expansion functions

Ak(s) = R[αk
s (q

2)] (7)

for the perturbative QCD contribution

r(s) = d1A1(s) + d2A2(s) + d3A3(s) (8)

to an observable in the time-like region.
At the one-loop level, with the effective coupling ᾱ

(1)
s =[

β0 ln(q2/Λ2)
]−1 one has

A
(1)
1 (s) = R

[
ᾱ(1)

s

]
=

1
πβ0

arccos
L√

L2 + π2

=
1
β0

[
1
2

− 1
π
arctan

L

π

]
;

L = ln
s

Λ2 , (9)

and for higher functions

A
(1)
2 (s) =

1
β2

0 [L2 + π2]
; A

(1)
3 (s) =

L

β3
0 [L2 + π2]2

;

A
(1)
4 (s) =

L2 − π2/3
β4

0 [L2 + π2]3
, (10)

which are not powers of A
(1)
1 (s).

The r.h.s. of (9) at L ≥ 0 can also be presented in the
form

A
(1)
1 (s) =

1
πβ0

arctan
π

L
, (9a)

convenient for the UV analysis. Just this form, (9a), was
discovered in the early eighties in [14,9], while (10) was
found in [9,10]. All these papers dealt with HE behavior
and did not pay proper attention to the region L ≤ 0.

On the other hand, expression (9) was first discussed
only 15 years later by Milton and Solovtsov [15]. It were
these authors who first made the important observation
that expression (9) represents a continuous monotonical
function without an unphysical singularity at L = 0 and
proposed to use it as an effective “Minkowskian QCD cou-
pling” α̃(s) ≡ A1(s) in the time-like region.

For the two-loop case, to the popular approximation

β0ᾱ(2)
s,pop(q

2) =
1
l

− b1(f)
ln l

l2
; l = ln

q2

Λ2

there corresponds [9,16]

α̃(2)
pop(s) ≡ A

(2,pop)
1 (s) =

(
1 +

b1L

L2 + π2

)
α̃(1)(s)

− b1

β0

ln
[√

L2 + π2
]
+ 1

L2 + π2 . (11)

For L 
 π, by expanding this expression and A2 from
(10) in powers of π2/L2 we arrive at the π2 terms (3).

Both the functions (9) and (11) are monotonically de-
creasing with the finite IR value α̃(0) = 1/β0(f = 3) �
1.4. They have no singularity at L = 0. Higher functions
go to zero, Ak(0) = 0, in the IR limit.

As has first been noticed in [17,18], by applying the
transformation D in (6) to the functions Ak(s), instead of
ᾱs(q2) powers, we obtain expressions D[Ak(s)] = Ak(q2)
that are also free of unphysical singularities. These func-
tions have been discussed in the nineties [19–24] in the
context of the so-called “analytic approach” to perturba-
tive QCD.

Therefore, this analytic approach in the Euclidean re-
gion and the RKP formulation for Minkowskian observ-
ables can be united in a single scheme, the “analytic per-
turbation theory”, APT, that has been formulated quite
recently in our papers of [17,18]. In the next section, we
give a short resume of this APT construction and then,
in Sects. 3 and 4, we present the results of its practical
applications.

2 The APT, a closed theoretical scheme

The APT scheme closely relates two ghost-free formula-
tions of the modified perturbation expansion for observ-
ables.
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2.1 Relation between Euclidean
and Minkowskian functions

The first one, that was initiated in the early eighties [9,10]
and outlined above, changes the standard power expansion
(1) in the time-like region into the non-power one of (8).
It uses the operation in (5), that is reverse, R = [D]−1, to
the one defined by the “Adler relation” (6) and transforms
a real function R(s) of a positive (time-like) argument into
a real function D(q2) of a positive (space-like) argument.

By the operation R, one can define [15] the RG invari-
ant Minkowskian coupling α̃(s) = R [ᾱs], and its “effective
powers” (7) that are free of ghost singularities. Some ex-
amples are given by (9), (10) and (11). At the one-loop
level, they are related by the differential recursion relation
kβ0A

(1)
k+1 = −(d/dL)A(1)

k and are not powers of A
(1)
1 .

By applying D to Ak(s), one can “try to return” to
the Euclidean domain. However, instead of αs powers, we
arrive at some other functions,

Ak(q2) = D [Ak] , (12)

analytic in the cut q2-plane and free of ghost singularities.
In the one-loop case,

β0A(1)
1 (q2) =

1
ln(q2/Λ2)

− Λ2

q2 − Λ2 ,

β2
0A(1)

2 (q2) =
1

ln2(q2/Λ2)
+

q2Λ2

(q2 − Λ2)2
, . . . (13)

These expressions have originally been obtained by
other means [19,20] in the mid-nineties. The first func-
tion A1 = αan(q2), an analytic invariant Euclidean cou-
pling, should now be treated as a counterpart of the invari-
ant Minkowskian coupling α̃(s) = A1(s). Both αan and α̃
are real monotonically decreasing functions with the same
maximum value

αan(0) = α̃(0) = 1/β0(f = 3) � 1.4

in the IR limit. (Note that the transition from the usual
invariant MS coupling αs to the Minkowskian α̃ and Eu-
clidean αan ones can be understood as a transformation
to new renormalization schemes. In the one-loop case,

αs → α̃(1) =
1

πβ0
arctan(πβ0αs)

and

αs → αan
(1) = αs +

1
β0

(
1 − e1/β0αs

)−1
. (14)

Here, the first transition looks “quite usual” as α̃ can be
expanded in powers of αs, while the second one in the weak
coupling case behaves like the identity transformation as
far as the second non-perturbative term e−1/β0αs leaves
no “footsteps” in the power expansion. For both α̃(1) and
αan

(1), the corresponding β-functions have a zero at α =
1/β0 and are symmetric under reflection, [α − 1/2β0] →
− [α − 1/2β0]. Moreover, the β function for α̃(s) turns

out to be equal to the spectral function for αan(q2) –
see below (18) at k = 1.) All higher functions vanish,
Ak(0) = Ak(0) = 0, in this limit. For k ≥ 2, they oscillate
in the IR region and form [25,26] an asymptotic sequence
à lá Erdélyi.

The same properties remain valid for the higher-loop
case. Explicit expressions for Ak and Ak at the two-loop
case can be written down [27,28]) in terms of a special
Lambert function. They are illustrated below in Figs. 1a,b.
Note here that to relate Euclidean and Minkowskian func-
tions, instead of integral expressions (5) and (6) one can
use simpler relations, in terms of spectral functions ρ(σ) =
�A(−σ),

Ak(q2; f) =
1
π

∞∫
0

dσ

σ + q2 ρk(σ; f);

Ak(s; f) =
1
π

∞∫
s

dσ

σ
ρk(σ; f), (15)

equivalent to the expressions Ak(q2) = D [Ak], and Ak(s)
= R[Ak].

Remarkably enough, the mechanism of the liberation
of unphysical singularities is quite different. While in the
space-like domain it involves non-perturbative structures
in powers of q2, in the time-like region it is based only
on a resummation of the “π2 terms”. Figuratively, (non-
perturbative!) analyticization [19,20,26] in the q2-channel
can be treated as a quantitatively distorted reflection (un-
der q2 → s = −q2) of a (perfectly perturbative) π2 resum-
mation in the s-channel. This “distorting mirror” effect,
first discussed in [15,29], is clearly seen in Figs. 1a,b men-
tioned above.

This means also that the introduction of non-perturbat-
ive 1/q2 structures now has got another motivation, see
(12), independent of the analyticization prescription.

2.2 Global APT

In reality, a physical domain includes regions with various
“numbers of active quarks”, i.e., diverse flavor numbers,
f = 3, 4, 5 and 6. In each of these regions, we deal with
a different amount of quark quantum fields; that is, with
distinct QFT models, with corresponding Lagrangians. To
combine them into a joint picture, the procedure of the
threshold matching is to be used. It establishes relations
between renormalization procedures for a model with dif-
ferent f values.

For example, in the MS scheme the matching relation
has a simple form:

ᾱs(q2 = M2
f ; f − 1) = ᾱs(q2 = M2

f ; f). (16)

It defines a “global effective coupling”

ᾱs(q2) = ᾱs(q2; f) at M2
f−1 ≤ q2 ≤ M2

f ,

continuous in the space-like region of positive q2 values
with a discontinuity of the derivatives at the matching
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Fig. 1. a Space-like and time-like global analytic couplings in the domain of a few GeV with f = 3 and Λ(3) = 350MeV;
b “distorted mirror symmetry” for global expansion functions. All the curves in (b) correspond to exact two-loop solutions
expressed in terms of the Lambert function

points q2 = M2
f . To this global ᾱs, there corresponds a

discontinuous spectral density

ρk(σ) = ρk(σ; 3) (17)

+
∑
f≥4

θ(σ − M2
f ) {ρk(σ; f) − ρk(σ; f − 1)} ,

with ρk(σ; f) = �ᾱk
s (−σ, f) which yields [17,18] via rela-

tions analogous to (15)

Ak(q2) =
1
π

∞∫
0

dσ

σ + q2 ρk(σ); Ak(s) =
1
π

∞∫
s

dσ

σ
ρk(σ),

(18)
the smooth global Euclidean and spline–continuous global
Minkowskian expansion functions.

In Fig. 1a, by the dotted line we give the usual two-
loop effective QCD coupling ᾱs(q2) with a singularity at
q2 = Λ2. Meanwhile, the dash-dotted curves represent the
one-loop APT expressions (9) and (13). The solid APT
curves are based on the exact two-loop solutions of the
RG equations and approximate three-loop solutions in the
MS scheme. Their remarkable coincidence (within 2–4 per
cent) demonstrates the reduced sensitivity of the APT
approach (see also [20–22]) with respect to higher-loop
effects in the whole Euclidean and Minkowskian regions
from the IR to the UV limits. Figure 1b shows higher two-
loop functions in comparison with the αan and α̃ powers.

Generally, the functions Ak and Ak differ from the
local ones with a fixed f value. Minkowskian global func-
tions Ak can be presented via Ak(s, f) by the relations

α̃(s) = α̃(s; f) + c(f); A2(s) = A2(s; f) + c2(f)
at M2

f ≤ s ≤ M2
f+1, (19)

with shift constants c(f), c2(f) representable via integrals
over ρk(σ; f + n) , n ≥ 1 with additional reservations, like
c(6) = 0, related to the asymptotic freedom condition.

The numerical estimate performed in [18] (see also Ta-
ble 6 in [27]) for traditional values of the QCD scale pa-

rameter, Λ3 ∼ 300–400MeV,

c(3) ∼ 0.02, c(4) � 3.10−3,

c(5) � 3.10−4; c2(f) � 3α(M2
f )c(f)

reveals that these constants are essential in the f = 3, 4
region at a few per cent level for α̃ and at the circa 10%
level for A2.

Meanwhile, the global Euclidean functions Ak(q2) can-
not be related to the local ones Ak(q2, f) by simple rela-
tions. Nevertheless, numerical calculation shows [27,28]
that in the f = 3 region one has approximately

αan(q2) = αan(q2; 3) + c(3); (20)
A2(q2) = A2(q2); 3) + c2(3) at M2

3 ≤ s ≤ M2
4 .

3 The APT applications

3.1 General comments

In what follows, we abstract from recent successive use
of the analytic approach to hadronic formfactors [30] and
concentrate on the QCD applications of APT.

To illustrate the quantitative difference between the
global APT scheme and common practice of data analysis
in perturbative QCD, consider a few examples.

In the usual treatment (see, e.g., [1]) the (QCD pertur-
bative part of) a Minkowskian observable, like the e+e−
annihilation or Z0 decay cross-section ratio, is presented
in the form

R(s) = R0 (1 + r(s)) ; (21)
rPT(s) = c1ᾱs(s) + c2ᾱ2

s (s) + c3ᾱ3
s (s) + . . .

Here, the coefficients c1, c2 and c3 are not decreasing
numerically; see Table 1. A rather large negative c3 value
comes mainly from the −c1π2β2

0/3 term. In the APT, we
have instead

rAPT(s) = d1α̃(s) + d2A2(s) + d3A3(s) + . . . (22)
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Table 2. Relative contributions (in%) of one-, two- and three-
loop terms to observables

Process q or s1/2 f PT APT
GLS sum rule 1.73GeV 4 65 24 11 75 21 4
Bjorken. s.r. 1.73GeV 3 55 26 19 80 19 1
Incl. τ decay 0–2GeV 3 55 29 16 88 11 1
e+e− → hadr. 10GeV 4 96 8 −4 92 7 .5
Zo → hadr. 89GeV 5 98.6 3.7 −2.3 96.9 3.5 −.4

with reasonably decreasing Feynman coefficients d1,2 =
c1,2 and d3 = c3 + c1π2β2

0/3, the mentioned π2 term of c3
being “swallowed” by α̃(s).

In the Euclidean channel, instead of a power expansion
similar to (21), we typically have

dAPT(q2) = d1αan(q2) + d2A2(q2) + d3A3(q2) + . . . (23)

with the same coefficients dk extracted from the Feyn-
man diagrams. Here the modification is related to non-
perturbative structures, in powers of q2, like in (13).

In Table 2, we give values of the relative contribution of
the first, second, and third terms of the r.h.s. in (21), (22)
and (23) for the Gross–Llywellin-Smith [31] and Bjorken
[32] sum rules, τ decay in the vector channel [33], as well as
for e+e− and Z0 inclusive cross-sections. As follows from
this table, in the APT case, the three-loop (last) term is
very small, and on being compared with the data errors,
numerically inessential. This means that, in practice, one
can use the APT expansions (22) and (23) without the
last term.

3.2 Semi-quantitative estimate

This conclusion can be valuable for the case when the
three-loop contribution, i.e., d3, is unknown. Here, some
use the so-called NLLA approximation, which is common
practice in the f = 5 region. For the Minkowskian observ-
able, e.g., in the event–shape (see, e.g., [34]) the analysis
there corresponds to the two-term expression

r(s) = c1αs(s) + c2α2
s (s). (24)

On the basis of the numerical estimates of Table 1, in
such a case, we recommend instead to use the two-term
APT representation

r
(2)
APT(s) = d1α̃(s) + d2A2(s), (25)

which, with L2 
 π2, is equivalent to the three-term ex-
pression

r∆
3 (s) = d1

{
ᾱs − π2β2

0

3
ᾱ3

s

}
+ d2ᾱ2

s = c1ᾱs + c2ᾱ2
s − δ3ᾱ3

s ,

(26)
i.e., to take into account the known predominant π2 part
of the next coefficient c3. As follows from a comparison
of the last expression with the previous, the two-term one

(24), the ᾱs numerical value extracted from (26), for the
same measured value robs, will differ mainly by a positive
quantity (e.g., in the f = 5 region with ᾱs � 0.12÷ 0.15):

(�ᾱs)3 =
πδ3ᾱ3

s

1 + 2πd2ᾱs

∣∣∣∣
f=5

20÷100 GeV

=
1.225ᾱ3

s

1 + 0.90ᾱs
� 0.002 ÷ 0.003, (27)

which turns out to be numerically important.
Moreover, in the f = 4 region, where the three-loop

(NNLLA) approximation is commonly used in the data
analysis, the π2 term δ4 of the next order turns out also
to be essential. Hence, we propose there, instead of (21),
to use the APT three-term expression

r
(3)
APT(s) = d1α̃(s) + d2A2(s) + d3A3(s), (28)

approximately equivalent to the four-term one

r∆
4 (s) = d1ᾱs + d2ᾱ2

s + c3ᾱ3
s − δ4ᾱ4

s ; c3 = d3 − δ3, (29)

or to

r∆
4 (s) = d1

{
ᾱs − π2β2

0

3
ᾱ3

s − b1
5
6

π2β2
0 ᾱ4

s

}

+ d2
{
ᾱ2

s − π2β2
0 ᾱ4

s
}
+ d3ᾱ3

s ,

with δ3 and δ4 defined [9,12] in (3).
The three- and two-term structures in braces are re-

lated to the specific expansion functions α̃ = A1 and A2
defined above (18) and entering into the non-power ex-
pansion (28).

To roughly estimate the numerical effect of using this
last modified expression (29), we take the e+e− inclusive
annihilation. For s1/2 � 3 ÷ 5GeV with ᾱs � 0.28 ÷ 0.22,
one has

(�ᾱs)4 =
πδ4ᾱ4

s

1 + 2πd2ᾱs

∣∣∣∣
f=4

3÷5 GeV
=

1.07ᾱ4
s

1 + 0.974ᾱs

� 0.005 ÷ 0.002,

which is an important effect on the level of circa 1 ÷ 2%.
Moreover, the (�ᾱs)4 correction turns out to be no-

ticeable even in the lower part of the f = 5 region! Indeed,
to s1/2 � 10 ÷ 40GeV with ᾱs � 0.20 ÷ 0.15 there corre-
sponds

(�ᾱs)4|f=5
10÷40 GeV � 0.71ᾱ4

s � (1.1÷0.3)·10−3 ( <∼ 0.5%).

3.3 Important warning

It is essential to note that the approximate expressions
(26) and (29) are equivalent to the exact ones (25) and
(28) only in the region L = ln

(
s/Λ2

) 
 π as shown on
Fig. 3.3.

One can see that the curve for approximate Minkows-
kian coupling,

α̃appr(s) = ᾱs(s) − (π2β2
0/3)ᾱ3

s , (30)
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Fig. 2. Comparison of common QCD coupling ᾱs with the
APT global ones (α̃, αan) in the q, s1/2 < 3GeV region at
Λ3 = 400MeV. By a dash-dotted line we indicate the approxi-
mate Minkowskian coupling (30). All the curves are taken (see
Tables 1, 5 and 6 in [28]) for the three-loop global case

which precisely corresponds to the popular approximation
(21) (and gives rise to the π2term in the α3

s coefficient)
has a rather peculiar behavior. In the region L > π it
goes rather close to the curve for α̃. For instance, at L �
π the relative error of the approximation is about 5 per
cent. On the other hand, below L � 0.8π (i.e., W � 1.0–
1.4GeV) the distance α̃–α̃appr between the curves (error
of approximation) increases and at L � 0.7π it blows up
(or rather “comes down”).

In particular, at s ≤ 2GeV2 it is rather inappropriate
to refer to ᾱs(s) and it is erroneous to use α̃appr(s) and
the common expansion (21 ).

This means that below s = 2GeV2 it is inadequate to
use the common ᾱs(s) and power expansion (21).

In other words, we claim that below s = 2GeV2 it is
an intricate business to analyze data in terms of the “good
old” (but singular) αs

1. Here, the approximate relation
(30) does not work as illustrated in Fig. 3.3.

In this low-energy Minkowskian/Euclidean region data
have to be analyzed in terms of the non-power expansion
of (22) and (23), and the extracted parameter should be
αan(s), α̃(q2) or Λ(3). In Table 3 we give a few numerical
examples for the chain

αan(Mτ ) ↔ α̃(Mτ ) ↔ Λ(3) → Λ(5) ↔ ᾱs(MZ),

1 In particular, this relates to the analysis of τ decay. In this
connection we would like to direct attention to the important
paper of [33] that treats the τ decay within the APT approach
(with effective mass of the light quarks and the threshold re-
summation factor) and results in Λ(3) = 420MeV, which cor-
responds to αan(M2

τ ) = 0.32 or α̃(M2
τ ) = 0.30. At the same

time, attempts to interpret the results of APT for τ decay in
terms of αs, like, e.g., in [35], need some special precaution; see
the next footnote. A more detailed comment on the theoretical
analysis of the τ decay will be published elsewhere.

Table 3. Numerical chain related LE with HE regions

α̃(Mτ ) αan(Mτ ) Λ(3) Λ(5) ᾱs(MZ)
0.309 0.332 450 MeV 303 MeV 0.125
0.292 0.314 400 MeV 260 MeV 0.121
0.278 0.299 350 MeV 218 MeV 0.119
0.266 0.286 300 MeV 180 MeV 0.116

which allows one to study the QCD theoretical compati-
bility of LE data with the HE ones in the APT analysis.

Here, the main element of the correlation is the chain
Λ(3) ↔ Λ(3) ↔ Λ(5) that follows from the matching con-
dition (16)2.

4 Quantitative illustration

Consider now a few cases in the f = 5 region.
Υ decay. According to the Particle Data Group (PDG)
overview (see their Fig. 9.1 on page 88 of [1]), this is (with
αs(M2

Υ ) � 0.170 and ᾱs(M2
Z) = 0.114) one of the most

“annoying” points of their summary of ᾱs(M2
Z) values. It

is also singled out theoretically. The expression for the
ratio of decay widths starts with the cubic term3

R(Υ ) = R0α3
s (ξM2

Υ )(1 − e1αs),

with ξ <∼ 0.5 and c1(ξ) � 1. Due to this, the π2 correc-
tions4 corresponding to the APT expression

RAPT(Υ ) = R0A3(ξM2
Υ )(1 − e1A4) (31)

are rather large, A3 � α3
s
(
1 − 2(πβ0)2α2

s
)

, A4 �
α4

s
[
1 − (10/3)(πβ0)2α2

s
]
in the region with π2β2

0(5) = 3.57
and αs(ξM2

Υ ) � 0.2. As a crude estimate (taken from
α3

s → A3 only),

∆αs(M2
Υ ) =

2
3
(πβ0)2α3

s (M
2
Υ ) � 0.0123,

which corresponds to

∆ᾱs(M2
Z) = 0.006, with result ᾱs(M2

Z) = 0.120. (32)

One should note here that this estimate is rather crude
and gives only an indication of the order of magnitude.

2 Generally, it is possible to use the correspondence between
αan, α̃ and αs as expressed by the relations (14). However, the
use of αMS

s (µ2) at µ <∼ 1GeV as a QCD parameter could be
misleading due to the vicinity to the singularity. For example,
at Λ(3) = 400MeV one has αs(M2

τ ) � 0.35 and αs(1GeV2) �
0.55, to be compared with αan(M2

τ ) � 0.31 and αan(1GeV2) �
0.40.

3 See, e.g., (9.16) in [1].
4 A first proposal of taking into account this effect in the Υ

decay was discussed [10] more than a quarter of a century ago.
Nevertheless, in current practice it is completely forgotten.
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The NNLO case. Now, let us turn to a few cases analyzed
by the three-term expansion formula (1). For the first ex-
ample, take e+e− hadron annihilation at s1/2 = 42GeV
and 11GeV.

A common form (see, e.g., (15) in [2]) of the theoretical
presentation of the QCD correction in our normalization
looks like

re+e−(s1/2) = 0.318ᾱs(s) + 0.143ᾱ2
s − 0.413ᾱ3

s .

In the standard PT analysis, one has (see, e.g., Table 3)
ᾱs(422) = 0.144 which corresponds to re+e−(42) � 0.0476.
Along with the APT prescription, one should use

re+e−(
√

s) = 0.318α̃(s) + 0.143A2(s) − 0.023A3(s), (33)

which yields α̃(422) = 0.142 → αs(422) = 0.145 and
ᾱs(M2

Z) = 0.127, to be compared with ᾱs(M2
Z) = 0.126

of the usual analysis.
Quite analogously, with ᾱs(112) = 0.200 and re+e−(11)

� 0.0661 we obtain via (33) α̃(112) = 0.190 which corre-
sponds to ᾱs(M2

Z) = 0.129 instead of 0.130.
For the next example, take the Z0 inclusive decay. The

observed ratio

RZ = Γ (Z0 → hadrons)/Γ (Z0 → leptons) = 20.783±.029

can be written down as follows: RZ = R0
(
1 + rZ(M2

Z)
)

with R0 = 19.93. A common form (see, e.g., (15) in [2]) of
presenting the QCD correction rZ looks like

rZ(MZ) = 0.3326ᾱs + 0.0952ᾱ2
s − 0.483ᾱ3

s .

To [rZ ]obs = 0.04184 there corresponds ᾱs(M2
Z) =

0.124 with Λ
(5)
MS

= 292MeV. In the APT case, from

rAPT
Z (MZ) = 0.3326α̃(M2

Z) + 0.0952A2(M2
Z)

−0.094A3(M2
Z) (34)

we obtain α̃(M2
Z) = 0.122 and ᾱs(M2

Z) = 0.124. Note
that here the three-term approximation (8) gives the same
relation between the ᾱs(M2

Z) and α̃(M2
Z) values.

Nevertheless, in accordance with our preliminary esti-
mate for the (�ᾱs)4 role, even the so-called NNLO theory
needs some π2 correction in the W = s1/2 <∼ 50GeV re-
gion.
The NLO case. Now, turn to those experiments in the
HE (f = 5) Minkowskian region (mainly with a shape
analysis) that usually are associated with the two-term
expression (24). As has been shown above (27), the main
theoretical error here can be expressed in the form

(�ᾱs(s)|f=5
20÷100 GeV � 1.225ᾱ3

s (s) � 0.002 ÷ 0.003. (35)

An adequate expression for the equivalent shift of the
ᾱs(M2

Z) value is

[�ᾱs(M2
Z)]3 = 1.225ᾱs(s)ᾱs(M2

Z)
2. (36)

We give the results of our approximate APT calcula-
tions, mainly by (35) and (36), in the form of Table 4

Table 4. The APT reviseda part (f = 5) of Bethke’s [2] Table 6

s1/2 loops ᾱs(s) ᾱs(M2
z ) ᾱs(s) ᾱs(M2

z )

Process GeV No [2] [2] APT APT
Υ decayb 9.5 2 .170 .114 .182 .120 (+6)
e+e−[σhad] 10.5 3 .200 .130 .198 .129(−1)
e+e−[j & sh] 22.0 2 .161 .124 .166 .127(+3)
e+e−[j & sh] 35.0 2 .145 .123 .149 .126(+3)
e+e−[σhad] 42.4 3 .144 .126 .145 .127(+1)
e+e−[j & sh] 44.0 2 .139 .123 .142 .126(+3)
e+e−[j & sh] 58 2 .132 .123 .135 .125(+2)
Z0 → had. 91.2 3 .124 .124 .124 .124(0)
e+e−[j & sh] 91.2 2 .121 .121 .123 .123(+2)
-”- ... 2 ... ... ... ...(+2)
e+e−[j & sh] 189 2 .110 .123 .112 .125(+2)

Averaged 〈ᾱs(M2
z )〉f=5 values 0.121; 0.124

a “j & sh” is for jets and shapes; figures in brackets in the
last column give the difference 	ᾱs(M2

Z) between common and
APT values
b Taken from [1]

Fig. 3. The APT analysis for ᾱs in the f = 5 time-like region.
Crosses (+) differ from circles by the π2 correction (35). The
solid APT curve relates to Λ

(5)
MS = 270MeV and ᾱs(M2

Z) =
0.124. By the dot-dashed curve we give the standard ᾱs (at
Λ(5) = 213MeV and ᾱs(M2

Z) = 0.118) taken from Fig. 10 of [2]

and Fig. 3. In the last column of Table 4, in brackets we
indicate the difference between the APT and the usual
analysis. The results of the three-loop analysis are marked
by bold figures. Dots in the lower part of the table corre-
spond to shape–events data for energies W = 133, 161, 172
and 183GeV with the same positive shift 0.002 for the ex-
tracted ᾱs values.

In Fig. 3 by open and hatched circles we give two- and
three-loop data from Fig. 10 of paper [2]. The only exclu-
sion is the Υ decay taken from Table X of the same paper.
By crosses, we marked the “APT values” calculated ap-
proximately by (35).
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For clarity of the π2 effect, we skipped the error bars.
They are the same as in the mentioned Bethke figure and
we used them for calculating χ2.

Let us note that our average 0.121 over events from
Table 6 of Bethke’s review [2] nicely correlates with recent
data of the same author (see the summary of [36]). The
best χ2 fit yields ᾱs(M2

Z)[2] = 0.1214 and5

ᾱs(M2
Z)APT = 0.1235.

This new χ2
APT is smaller χ2

APT/χ2
PT � 0.73 than the

usual one. This illustrates the effectiveness of the APT
procedure in the region far enough from the ghost singu-
larity.

5 Conclusion

It is a common standpoint that in QCD it is legitimate to
use the expansion in powers of αs for observables in the
low-energy (low momentum transfer) region. At the same
time, there exist rather general (and old [37]) arguments
in favor of non-analyticity of the S matrix elements at the
origin [38] of the complex plane of the α expansion param-
eter variable. This, in turn, implies that the common per-
turbation expansion has no domain of convergence. Tech-
nically, this corresponds to a factorial growth (∼ n!) of
the expansion coefficients (like dn or rn) at large n [39,
40]. In QCD, with its “not small enough” αs values in the
region below 10GeV it is a popular belief that one does
face the asymptotic nature of the perturbation expansion
by observing the approximate equality of the relative con-
tributions of the second (α2

s ) and the third (α3
s ) terms to

the observable, like in all PT columns of Table 2.
Our first qualitative result consists in the observation

that the convergence properties of the APT expansions
drastically differ from the usual PT ones.

The evidently better practical convergence of the APT
series for the Euclidean observable, as has been demon-
strated in the right part of Table 2, probably means that
the essential singularity at αs = 0 is adequately taken into
account by the new expansion functions Ak(q2). On the
other hand, in the time-like region the improved approx-
imation property of the APT expansion over Ak(s) has a
bit different nature, being related, in our opinion, to the
non-uniform convergence of the standard PT expansion
for Minkowskian observables. In any case, from a practi-
cal point of view
(1) in the APT, one can use the non-power expansions
(22) and (23) without the last term.

The next point, discussed in Sect. 3.3, refers to a more
specific issue connected with the current practice of the
Minkowskian observable analysis in the low-energy
(s <∼ 3GeV2) region (like, e.g., inclusive τ decay). As has
been shown (see Fig. 3.3)
(2) below 2 GeV2 it is impossible to use the common power
expansion (1) for a time-like observable.

5 This value, corresponding to Λ(5) = 290MeV, is sup-
ported by a recent analysis [33] of the τ decay that gives
Λ(3) = 420MeV; compare with Table 3.

A second group of results is of a quantitative nature.
They are
(3) the effective positive shift ∆ᾱs � +0.002 in the upper
half (≥ 50GeV) of the f = 5 region for all time-like events
that have been analyzed up to now in the NLO mode;
(4) an effective shift ∆ᾱs >∼ +0.003 in the lower half (10÷
50GeV) of the f = 5 region for all time-like events that
have been analyzed in the NLO mode;
(5) the new value

ᾱs(M2
Z) = 0.124, (37)

obtained by averaging new APT results over the f = 5
region.

These quantitative results are based on the new APT
non-power expansion (8) and the plausible hypothesis on
the π2 term prevalence in common expansion coefficients
for observables in the Minkowskian domain. The hypoth-
esis has some preliminary support (see Table 1) but needs
to be checked in more detail.

Nevertheless, our result (37) being taken for granted
raises two physical questions:
(1) the issue of the self-consistency of the QCD invariant
coupling behavior between the “medium (f = 3, 4)” and
“high (f = 5, 6)” regions.

Here, more detailed APT analyses of the data on DIS,
heavy quarkonium decays and some other processes are in
order. As has been mentioned above, a fresh APT analy-
sis of the τ decay [33] seems to support such a correlation
with Λ3 ∼ 400 ÷ 450MeV and Λ5 ∼ 290MeV.
(2) The new “enlarged value” (37) can influence various
physical speculations in the very HE region, in particular
concerning the superpartner masses in MSSM GUT con-
structions – compare, e.g., with recent attempts [41] in
this direction.
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